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SUMMARY

Polarized laser light conducted in optical fibers is modulated by time-varying and space-varying
mechanical stress. Stress effects on states of polarization are particularly important in applications of
optical fibers to sensing of acoustic and mechanical fields. Quantitative estimates are essential in these
cases. The procedure for making these estimates followed these steps: first, to lay a firm groundwork
for making numerical calculations a detailed review of the theory of coupling between electric fields and
mechanical stress was undertaken. An important distinction was made between single-mode fibers car-
*rying one mode and the same fibers carrying two degenerate modes. The results of this review are
presented in a group of equations which are applied to the case of pure torsion. The resultant calcula-
tions agree with the work of Ulrich and Simon. Upon completion of this review a number of specific
cases were calculated of the change in phase and state of polarization of polarized light in optical fibers
disturbed by mechanical stress; these cases were

Case 1. Applied stress on the fiber is axisymmetric and everywhere uniform along the optical
path

Case 2. Applied stress on the fiber is axisymmetric but varies along the optic path

Case 3. Tensile or compressive stresses are applied to the ends of the fiber

Case 4. Oblique incidence of optic ray and pure bending

Case 5. Fiber subject to both bending and shear

Case 6. Fiber wrapped on a mandrel

Case 7. Fiber subject to random stress

Case 8. Fiber squeezed by diametral forces

Case 9. Pure torsion

It is concluded that the birefringent effects are negligible in most applications because there are no
components of stress transverse to the optic ray. Two important cases do show birefringent effects,
fiber squeezed by diametral forces and fiber subjected to random stresses. Numerical calculations
predict that for fibers of fused silica, at the limit of allowable stress,

Anmax = -8.5 X 10-4 for the case of applied diametral forces

and
And = 1 rad if the rms stress fluctuation is 23.4 kPa (3.4 psi).

The case of a fiber 80 tum in diameter with a core 4.5 ,um in diameter wound on a mandrel 1 cm in
diameter has also been numerically estimated for fused silica at the maximum allowable stress. Here
the birefringent effect is negligible if the optic ray is parallel to the axis of the fiber. However, if the
optic ray is incident at 40 to the optic fiber axis, then it is estimated that

Anmax -2.5 x I04.
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OCEAN ENVIRONMENTAL INFLUENCES OF TEMPERATURE
AND MECHANICAL STRESS ON BARE FIBER-OPTIC

SENSORS OF ACOUSTIC PRESSURES
PART II

INTRODUCTION

The effect of an optical waveguide fiber under various conditions of temperature, pressure, etc.
upon the state of polarization of incident light has been investigated by several authors [1-31. Recently,
these studies have been made in connection with the magnetooptic (Faraday) effect [4,51. Although
varied in details, most papers present the typical laboratory experimental setup of Fig. 1: A He-Ne laser
(1) generates linearly polarized light with a fixed plane of polarization. This passes through a quarter-
wave plate (2) and emerges circularly polarized. The light then enters a polarizer (a Glan-Thompson
prism) (3), which is mounted on a rotatable fixture, and emerges linearly polarized at any desired polar-
izing angle. This beam is then focused by a microscope objective (4) onto a fiber (5). A watertight
compartment (6) allows measurement at various fiber temperatures. The emerging light is collimated
by a lens (7) and then analyzed by a rotatable Wollaston prism (8), which splits the incident light into
slow and fast components by birefringence (9). These components are detected by photodetectors (10)
which deliver intensities I, and I2.

BATH FLUID

Fig. I - Experimental study of polarization

During the experiment the polarizer (2) is set to an arbitrary angle 4 (input polarization angle)
and the analyzer (8) is rotated to an output angle tp such that one of the emerging beams has a max-
imum intensity Imax and the other has a minimum intensity Imin. The degree of polarization P is then
determined by analog electronic circuits,

p Imax Imin

Imax + Imin

Thus polarization effects of a fiber of length L are characterized by measurement of ', 4i, and P as a
function of environment (temperature, pressure, etc.). A birefringent model of the fiber then relates L

Manuscript submitted April 29, 1980.
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to the phase difference 8 between fast and slow modes. In this way 8 is deduced by measurement. The
magnetooptic effect on polarization is studied by introducing a magnetic field with a coil (11).

In applications of optical waveguides to such tasks as communications, measurement, and control
of information and processes the concept of depolarization is crucial. This refers to reduction in P and
change (possible randomization) in tp and 8 due to temperature and mechanical stress. It also refers to
the loss of coherence between fast and slow waves in the fiber caused by the same external factors. A
summary of facts and theories of partially polarized light is found in standard treatises [6, p. 5521.

This report will concentrate on the theory of the effect of mechanical stress or strain on the state
of polarization of a light beam in an optical waveguide fiber. An experimental setup to study this effect
could be the same as in Fig. 1 except for replacement of the temperature-controlled bath by various
strain-induced deformations of the fiber.

CHARACTERIZATION OF THE STATE OF POLARIZATION OF LIGHT

A brief review of standard theory will help clarify more advanced concepts in this report. The
propagation of polarized light E = (Es, Ey, Ez)ew' in a fiber can be visualized as the trace of the tip of
the vibrating electric vector transverse to the direction of propagation. In general this trace is a helix
whose radius varies with distance of propagation. The projection of an adjacent portion of the helix on
any transverse plane is an ellipse whose semimajor axis is a units long, oriented at angle qi relative to
the x axis, and whose semiminor axis is b units long. The helix is called right handed (or positive) if
an observer looking face on at the source of light sees the electric vector rotating clockwise; it is left
handed (or negative) if the vector is rotating anticlockwise. A reversal in direction of the ellipse means
a switch from positive to negative, that is, the azimuth angle X changes by 7r radians. To any ellipse
with its major axis at azimuth a there corresponds an orthogonal ellipse whose major axis is at 90° + a.
Since the ellipse can be represented in parametric (or component) form,

E = a cos (T + 81)

and

Ey = b cos (T + 82),

or

Ey b e-1(81 -82)

E, a e

its orientation (angle vp) depends on 81 - 82. When the phase 8 changes with distance of travel z, its
magnitude at wavenumber k is

8 = kz = ko nz =-nz,

where n is the index of refraction and X 0 is the wavelength of the light. Thus,

81-82= A z(ni - n2).

In an anisotropic (birefringent) fiber n, ad n2. This causes the ellipse to change orientation as it pro-
pagates.

A positive (clockwise) ellipse at fixed azimuth X ranges in appearance from a line (b = 0) to an
ellipse (b X a) to a circle (b = a). A negative ellipse exhibits the same series of shapes, except with
reversed rotation.

2
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The variation of the components Ex, Ex, E, propagating in an optical fiber along coordinate z can
be studied by the matrix algebra of the Jones calculus [7]. An equally illuminating procedure is to
model the state of polarization of the light as a point on the surface of a unit (Poincar6) sphere S [8].
On this sphere an arbitrary point represents a state of elliptic polarization which is traced out in time by
the electric vector at a particular cross section z = const. of the fiber. All latitudes above the equator
represent positive rotation; those below represent negative rotation. Since the relative shape of the
ellipse can be given by the ratio b/a of its axes, and its orientation by an angle q of the major axis rela-
tive to some reference line, the point on S can be located by two angles: an azimuth angle 24, and an
elevation angle 2 x (Fig. 2). The angle appears double because an ellipse completes a cycle of orienta-
tion in a plane cross section in ir radians (180°), whereas a point P completes the same cycle on S in
27r radians (3600). Also, since X varies from 0 to 450 as b/a varies from 0 to 1, it is seen that

tan X = b/a.

Two special cases of the elliptical state of polarization appear on S.

Ellipse degenerates to a line (b = 0)

Here X = 0, hence, all polarization states P are found on the equator (Fig. 2). At point H the
angle 20 = 0; the light is then linearly polarized in the direction of the x axis. At point V the angle
20 = 7r, or qi = 90°; the light is then linearly polarized in the direction of the y axis. At C the plane of
polarization is 45° relative to the x axis, and at D it is 135°.

Ellipse degenerates to a circle (b/a = 1)

Here tan X = 1 (i.e., 2 x = 900). There are only two states of polarization, L and R (Fig. 2).
Point L (north pole) represents circularly polarized light rotating counterclockwise (when looking from
L toward the origin), while point R (south pole) represents circularly polarized light rotating clockwise
(when looking from R toward the origin).

L

D C~~~~V2
Fig. 2 - Angles 2t and 2x on a Poincar6 sphere a C

R

When a light beam of specified polarization (PI on S) enters a birefringent medium, its state P2 at
increment dz of penetration is a point on the trajectory d C(z)/dz of the unit radius vector C(z) on S
whose initial terminus is PI. This change from P1 to P2 is caused by the phase advance 8 with distance
of penetration of the fast component of the light vector over the slow component, which thus alters the
initial time phase of the light vector components along the major and minor axes of the ellipse at PI.
Since any incremental trajectory on the surface of a sphere corresponds to a rotation about some diame-
ter, one can find state P2 by rotating the entire sphere S through an angle 8 about a uniquely chosen
axis of rotation AAa, where A and Aa are opposite points at the ends of a single diameter, representing
the two unique polarization states (or eigenstates) of the medium relative to some reference line.

3
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For example, assume that a linear birefringent medium is so oriented that it resolves an incident
linearly polarized light into two linearly polarized orthogonal components, one along X and the other
along Y. Directions X and Y are taken to be the privileged axes along which the states of polarization
do not change with penetration. The component along X is at state H on S, while the component along
Y is at state V. The axis HV is therefore the axis of rotation for any state PI moving along trajectory
C(z) to state P2. To illustrate, let PI be a linearly polarized beam incidenton the birefringent medium
at 00 = 200 relative to X. Its point on S is on the equator at azimuth angle 400 relative to HV. It is
resolved by the medium along the privileged axes XandY, where the resultant components travel at
different speeds. After the beam penetrates a distance AZ, the phase along the fast axis (say H)
advances (say) 8 = 150 ahead of the phase along the slow axis (say J0. The state P2 (AZ) on S is then
obtained by rotating the entire sphere about HV counterclockwise (looking from the fast axis H toward
the origin) through an angle of 150 (Fig. 3). Since the elevation angle 2x of P2 is different from zero,
it is seen that state P2 represents elliptical polarization,

e8 1/2 0 coste

EJ= [° i8/2 sinOoJ E0 ejwt.

The angle t of the major axis satisfies the equation

tan 2q = tan20 0 cosS = tan40`cosl5 0 = 0.81,

or 2P = 39.020 and t/ = 19.510. The relations between Emax, Emin, Ey. Ex, E0 , i/, and 0 0 are shown in
Fig. 4. The new coordinates of polarization state P2 are azimuth angles 24r2 and elevation angles 2X29

In sum, in this example the incident wave, linearly polarized at 00 = 200, becomes elliptically
polarized at 190. The magnitudes of Emax, Emin, and degree of polarization will be discussed later.

L

C

Fig. 3 - Evolution of state of polarization from PI to P2
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Fig. 4 - Definitions of parameters in elliptical polarization

TYPES OF BIREFRINGENT MEDIA

The axis of rotation AAa on the Poincar6 sphere is determined by the optical properties of the
medium. Three types of media can be described.

A medium which has two eigenstates of linear polarization is called a linear birefringent medium.
When a beam with elliptical polarization is incident on this type, it is resolved into two orthogonal
linearly polarized beams (referred to as the fast beam and the slow beam). In this medium all axes of
rotation are diameters confined to the equatorial plane of the S sphere. The unique diameter (axis of
rotation) for a given state PI is fixed by the orientation of the privileged birefringent axes relative to
the X and Y axes of the (transverse) coordinate system. In the above example the unique diameter was
HV. The direction of rotation is always taken to be counterclockwise around the faster state when look-
ing toward the origin.

A medium which has two eigenstates of circular polarization is called a circular birefringent
medium. When a beam with elliptic polarization is incident on this type of medium, it is resolved into
two circularly polarized beams of opposite rotation. The unique diameter of rotation is the axis LR on
the S sphere. The trajectory of new states P2(AZ) lies on latitude circles, and the direction of rotation
is counterclockwise about the faster state, as in the previous case. When the incident-beam polarization
is linear, this medium resolves the beam into two oppositely rotating, equal-amplitude, circularly polar-
ized beams. The net effect after the beam penetrates a distance AZ is rotation of the incident plane of
polarization to a new plane. This medium exhibits optical activity.

A medium which has two eigenstates of elliptical polarization is called an elliptically birefringent
medium. When a beam with elliptic polarization is incident on this type of medium, it is resolved into
two elliptically polarized beams with opposite rotation. The unique axis of rotation for a given state PI
is an arbitrary diameter of the S sphere. This medium exhibits a combination of birefringence and opti-
cal activity. The incremental rotation A' due to an incremental birefringent phase difference 8' and an
incremental optical activity p' is

^t= +/^2 + (2p)2.

The unique axis of rotation for a state PI is a diameter lying in the plane of the corresponding linearly
birefringent medium axis, but at an elevation such that

5
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2x= arctan

The direction of rotation is counterclockwise about the faster state.

EVOLUTION OF THE STATE OF POLARIZATION WITH DISTANCE OF PENETRATION

Ulrich and Simon [91 have studied the effect of twist on the state of polarization of single-mode
fibers. Their approach is reviewed here.

Let w (z) be a vector in xyz space whose magnitude |w I is chosen to represent the angle of rota-
tion per unit length of penetration and whose associated spherical angles 2x. and 2e@ locate the end
point of a diameter of an S sphere which forms the axis of rotation. Let C(z) be a unit vector of this
sphere extending from the origin of S to the state-of-polarization point PI at distance Z along the fiber.
Then the new state of polarization a short distance beyond Z is given by

dC(z) = W(z) x C(z).
dz

Assume that state PI represents elliptical polarization and assume that the medium rotates PI through
an angle , (z) due to birefringence and an angle a (z) due to optical activity. Then the total rotation
vector for small increments in C is

W (z). a z) + (z).

First, let w, a, and p be independent of z. There are then two points (+ w/w), at the ends of a fixed
diameter on a Poincar6 sphere, which are the privileged directions of propagation of the two eigenstates
of elliptic polarization. In the cross section (z = const.) of an optical fiber the orientation of these
ellipses is given by P (a constant). The length ratio of the axes is given by the elevation angle 2x,
where (as before)

tanX =1 

Next, let a and P depend on travel distance z. This is the case of a twisted birefringent fiber. As the
polarized light penetrates the fiber, two events occur simultaneously: (a) the privileged axes of
birefringence rotate and (b) the phase of the fast wave relative to the slow wave increases. Both effects
can be modeled. To model event (b), Ulrich and Simon [9] insert a local Cartesian coordinate system
R° at each z = z°, and orient x° and y° to be parallel to the local fast and slow axes respectively. Polar-
ization changes in this local system are represented on the So sphere by the unit vector CO rotating
about the axis of rotation flQ fixed in So. To determine the magnitude and direction of Qo, one must
be given the birefringence rotation Po, the optical activity rotation a°, and the angle of twist rotation To,
all in R°. Then

no = P0 + a° - 2rO.

The factor 2 appears here because azimuths on a Poincare sphere are twice those of real space. The
minus sign is a convention that the twist is clockwise as z advances while the rotations ,8 and a° are
counterclockwise. In the local system diameter flQ defines two eigenstates of elliptical polarization
± L 0/ fl which propagate in R 0 unchanged.

To model event (a), the entire local So is rotated about LR at a rate 2T relative to fixed laboratory
coordinates. Thus the total trajectory C(z) of the polarization state is the vector sum of a trajectory

6
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along the rim of the base of a cone on So (apex at the origin) plus the trajectory imparted by the gen-
erator of the cone as its tip moves in a latitude circle around RL of the laboratory-fixed sphere S. The
combination makes C(z) trace out a cycloid on S.

This analysis closely parallels that of the general motion of a spinning top in which f10 is the ana-
log of the angular velocity of the top in a local coordinate system, and r is the angular velocity of the
local system relative to the fixed laboratory system. The top undergoes precession, which is the analog
of the birefringent effect alone, and nutation, which is the analog of the combination of optical activity
and birefringence.

The trajectories described above depend on specifically located axes of rotation. The determina-
tion of these axes is sufficiently complicated in the general case to require a complete review of the
theory of the effects of perturbations of the dielectric polarization on the propagation of light in a
dielectric waveguide. This is taken up next.

EFFECTS OF DIELECTRIC POLARIZATION ON THE PROPAGATION
OF LIGHT IN A WAVEGUIDE

Field Equations

Maxwell's equations in the SI units form the starting point for this analysis:

V x H =J + 8D (1)

V X E + 8B =0, (2)
at

V D=p, (3)
and

V B= 0, (4)

where the units are H, A m-l; J, A m72 ; D, C m-2; E, V'rn71; p, Cmrn73 ; and B, V-srnf-2 .

To this set one adds the constitutive equations which relate B and H and which relate D and E:

B = 0 H + -toM = A'H, /A'= /o(1 + MH-1) (5)

and

D = EoE + P. (6)

where the units are A, N.s2/C2; E, C2/N.m2; M, A m-1; and P, Cm- 2. The vectors P and M are the
dielectric polarization and magnetization respectively.

Assume J _ 0. Elimination of B from (1) and (2) leads to an equation in E,

V2 E -V Q- E) - A',o aa2 E _a A ,6p = 0 (7)
vE-V~~V~~E)-~E a t2 at 2 (7

In this analysis we neglect magnetization and set pb' , 0= 0 (1)Ns2C-2. Also, in the absence of true
charge p the displacement D is a constant. Thus,

V * D = V *(EOE + P) = 0 (8)

7
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or

V E = -iE -(VEo . E) -,E V P.

We apply Eq. (7) to a fused silica waveguide of very small diameter. In the normal state of this
material we assume P to be negligible. In the perturbed state caused by mechanical, thermal, or optical
stresses the vector P takes on significant magnitudes. A simple model which is useful for our purposes
has P proportional to E,

P= UE, (9)

in which the SI units of the elements of dyadic U are those of the dielectric constant E, namely,
C2 /m2 -N. Applying (8) and (9) in the steady state (frequency f = w/2ir) to (7), one obtains

V 2 E + V [s-El VE0 * E + e- V * UEI + k2 E + e- k2 (UE) 0, (10)

where
2 k2.

For high purity fibers we can readily assume that VEO is negligible.

To apply Eq. (10) we must deal with components of vectors. A useful decomposition is, in
tangential (superscript t) and longitudinal (superscript z) components,

E= Et+ kEZ,

V2 = (Vt)2 + a22

o=Ex+ay,

and

P P'+ kPZ,,= (UE)t + k(UE)z.

In this report interest will be focused mainly on the tangential vector Et. Its propagation is governed by
the reduced equation,

V 2 E'+Vt(fE- lV * UE)+ k2 Et+ e l k2 (UE)'=0. (11)

We seek a solution of (11) as a superposition of waveguide modes in a circular fiber,

E'(x,y,z) = z am(z)ekmz Et (xy) (12a)
m

and
UE(x,y,z) = , am(z)(e1kIZUEn)t+ k(ekmzUE,,jl (12b)

m

Now

v2 E't am (z)eikmz[(Vt)2 Et -km EI + eikm' [,,']+,2ikmam] (13)
m m

in which the prime in am' means aiaz. When (13) is inserted into (11) a number of terms of the latter
cancel because they satisfy the steady-state wave equation of waveguide modes, in which the expansion
coefficient am (z) = am = constant,

8
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(V')2 E + (k2
-k)E' = 0. (14)

We therefore consider only the second sum in Eq. (13). In it, all terms in a' (z) are negligible for z >
X, X = 2'r/k. Thus the propagation of Em is governed by the equation

emz 2ikmz a,, (Z) (iE + jEm) + amE -lk2[i(UEm)x+ `(UEm)Y1 (15)
m

am EOl{ 2 (UEm )x+ (UEm)] + ax (UEm)x+ a2(UEm)Y1|

+ atneOj 8-1 e2kmz(UEm)z+j ay& ea2 imz(UE)z = 0.

In this infinite sum one can find am' in terms of am by use of the orthogonality of modes in the
waveguide. The relation am/am determines the coupling of modes caused by the dielectric polarization.
Its calculation is described next.

Mode Coupling in a Dielectric Waveguide

The time-averaged flux of energy in a waveguide is

W= f(E x H*) kdA = f(E X H *)ZdA. (16)

For each mode,

Wm = B. f (Em tx H t )YdA. (17)

We apply this formula to a circular fiber whose diameter is so small as to permit the propagation of a
single mode only. Since this mode can be arbitrarily oriented in a cross-section of the fiber, it can be
split into two orthogonal modes propagating with the same magnitude of wavenumber. These are
designated as degenerate modes.

Application of (17) to a case of degenerate modes for a single-mode waveguide requires special
caution. Assume a pair of degenerate modes with imaginary z components (this example is used by
Ulrich and Simon [91)

El = - _ = {Ef, EJ, El } = {Jo(r), 0, cosioJo(r)I (18a)

and

E2= - {E, E2, E} 0, Jo(r), - sin(J (r) (18b)

where 4 is a polar angle in the cross sectional area A, Jo(r) = dJo/dr, ki is the wavenumber in the first
(degenerate) mode, and the components are nondimensional. If (18) is inserted into (17) and the
latter is applied without modification, one obtains

Wm= 8mn (fiT4 Em* + JEmy) X GH,( + JHY) Id (19)

= tmn f (Em- HnyEmy BH*) dA.

9
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Since the goal of this analysis is to find the ratio am,'I/am, we are required to reduce the sum on a,' (z) to
one term. We therefore multiply the i component of (15) by HY'* and the j component by H,' . When
m •£ n, Eq. (19) is zero as required. However, if m = 1 and n = 2, it is seen from (18a) that Hny* is
zero. Hence all terms in the i component will be zero. We will therefore not be able to use this sum to
find a relation for a,, in terms of am. On the other hand, H2 is not zero, thus the j component can be
used. To avoid this difficulty, we use a second orthogonality,

Wm8mnn= f(H,* x Ent)zdA (20)

- f(Hm* EnY-Hm En' *) dA,

Again, when m = 1 and n = 2, one multiplies the i component of (15) by HI. Since this is not zero,
the i component will yield a relation between am, and am. In contrast, multiplication of the i component
of (15) by HI' causes all terms to vanish. These thoughts lead to the following summary: to apply
orthogonality of modes to (15), we multiply the I component by Hm and the j component by Hn, and
then integrate over the cross-sectional area of the fiber. The result is

£ ekn I2ikm an (z) jf Hm En' dA + an ,Ek l1k2 2f Hmy(UE,")XdA (21a)

n

+ an E o I 1; Hy |T2 (U E)X + 2 (UEn)yI dA}ax22axa
+ I an,,e6 l1 Hy 82 eknZ(UEn)zdAj 0

and

Iekmz12ikm a,'(Z) 4 Em HnxdA + ame O l k2 f (UEm)YHxdA (21b)
m

+ ame 0 l| a (UEm)X+ a2 (UEm)lHfxdAI

+ I, ame 1 a8az e mz(UEm)ZHnxdAJ = 0.

These equations can be recast to bring out the concept of mode coupling.

Let m = 1 in Eqs. (21a) and (21b). Then, adding the two together, one obtains

e l' 2 ik I a; (z ) lI'1))=I e n an [f 6-1 k i ln) + 0 I Iln2 (22a)
n

MIf ) - HI (UE,)xdA + f (UE1)YHnxdA, (22b)

and

I2) - f HI |a2 (UE,)x + 82 (UEn,)) + ah (UE,)x+ 2 UE1) IHnfdA. (22c)
n la[x 

2 axaFI ay jd Y ay 2 j

Define

Am(z) = e m am(z) and Am'(z) = am'(z)e m + ikmAm(z). (23)

10
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Since
M ez 2 6 l(1k2 I() + E -IPI()1

a((z)ekmz . _k (24)
2ik1 IA

= i I KlnAn,
n

it is seen that

A(z) = ikiAI(z) + i I Kl A,, (25)
n

and

4E01 k2 fi, + 4E1 2)
Kin = 2k 1 + I (26)

Similar formulas are obtained for m = 2. The quantities Kmn are the mode coupling coefficients. They
describe how the dielectric polarization caused by the dyadic U makes the expansion coefficient am of
one mode depend on the coefficients of all other modes. A particular case of mode coupling of primary
interest here is the photoelastic effect, in which U describes the interaction of light and mechanical
stress. This is described next for the case of torsional stress.

Dielectric Polarization by Torsional Stress

The dyadic operation U E yields a vector with three components:

(UE)x= U~xEx+ Uxy Ey + U), Ez, (27a)

(UE)-Y= U~yEX Ex+ U EY+ Uy EZ, (27b)

and

(UE)z= Uz, Ex + Uzy EY + Uzz Ez. (27c)

When the fiber is strained in pure torsion (Fig. 5), the displacements for a twist T (angle per unit

length) are

U = -Tzy and uy = Tzx. (28)

The strains are then

S., = S., = aux + auz = -Ty (29a)
Iaz axj

and

I au ayuS = Sz = 1 ay+ u 1 =TX. (29b)

Now the components of the dyadic U are proportional to the strain components,

Uij= gSU. (30)

11
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Fig. 5 - Torsional displacements

. ~~~Uy-

x

The dielectric polarization thus reduces to the following components:

(U E)x = -gTyEZ = -gT r sin 4 EZ, (31a)

(UE)y= gixE' = gTr cos E', (31b)

and

(UE)Z= -gTyEx + gTxEY= -gT r sin c Ex + gTr cos 4 Ey. (31c)

We shall use these components to calculate mode coupling coefficients for the case of pure torsion.

Mode Coupling Coefficients for Pure Torsion

The calculation for the case m = 1, n = 2 will proceed in steps. From Eq. (21a),

4 HI(UE2 )xdA = V , J0(r)(-gT)rsin 24 kt Jo(r)dA (32a)

k, k f gT J; r sin2 ) JO(r)Jo(r) dA

and

i HI -aa (UE2)y= Jo(r) aaa gT Yj(r)dA (32b)~ x~y A xay k, r

=__ ___ gT Jo (r)o(r) dA.
t' ck1 r

In Eq. (21b) we calculate

; (UEI)yH- dA = gT r cos4) (k) cosO Jo(r) , Jo(r) dA (32c)
k=

iN- 1 ' E 0 rCOS2 4) Jo(r)Jo(r)dA

12
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and

f a2 (UE,)xHdA -2=f LgiYk r Jo(r) (r) dA (32d)ayax a~~~yaxlkiTr ALI Jo rjuI

g i' fi0 , Jo(r)Jo(r) dA
ki u'' r

We omit for the moment the calculation of the third terms in (21a) and (21b). Adding Eqs. (32a) and
(32c), one obtains

[/(2) = gT 2Tr r r2 Jo(r) Jo(r) dr. (33a)

Integration by parts leads to

R 2 dr ~J&2(r) 2IR J02(r)2rd
frO [Jo(r) Jo(r)]r2 dr 2 r 2 2rdr

=-fR J2 (r) rdr.

Hence,

I(2) = kI gr2rr jf J2 (r)rdr. (33b)

Next we calculate

f HI Ej dA = 21r J , ° Jo2 (r)rdr, (34a)

f El Hxl dA = 0, (34b)

f HY EX2 dA = 0, (34c)

and

f EY Hx2 dA =-2Trf ""AE J32 (r) rdr. (34d)

We combine (34a) and (34b) and combine (34c) and (34d), and get

IW0) = 2Tr f , ° Jo(r)rdr (34e)

and

=2(2° =-4 (34f)
These quantities will now be used to find a,,' of am.

As an example, let n = 2. Then

E01 2 i grAE fR J0 + . ____ gr 2., 
eOIk2 k g_ g r 2 (r)rdr + iEo Ik fo Jo(r) Jo(r)dr

K4 1 d
47Tkj t O o (r) rdr

13
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Now when r is very small, JO(r)- 0, hence we neglect 1122). Thus,

ie-1 l 2

K 12 2 2 2k? 

If

g = p44n4 e 0 and n01= k/kj,

then

1l2 EO ... P4 4 no Eo P4 4fno-Ki=2 no- 2 pnOe=2 4n.

This result is identical (except for sign) with that of Ulrich and Simon [9].

Since m and n are dummy indices when they appear in Eqs. (21a) and (21b), it is seen from
(34f) that

K1 2 - K2 1.

We return briefly to the third terms in (21a) and (21b). They both cancel for m = 1, n = 2:

iHYIaaa eik2 (UE 2)z dA= , JO(r) ik2 -gTy * 0 + gTX J0 (r) dA e2Z

=-grik 2 " ° J;2 W(r) dA ek 2z

and

iklz a02 .,j/JE j J_2__dA
ff ikd e 0 a [-gTyJo (r) + gTX * 01 , ° (-)Jo(r)dA = ikIk ek gT ,°J;(r) dA.

Since kI = k2 (modes are degenerate), the z-components cancel.

We next consider the mode coupling for the case of m = 1, n = 1:

43 HI (U E)x dA =4f Jo (r) ° |-gT r sin - cos Jo (r)|.

27r
Now fo sin 4 cos 4 do = 0, hence this integral is zero and

f3 (U E,)Y H-f dA =fgT r cos 2 ki Jo (r) 0 =0,

;Hg 02 (UE )Y dA - J0 (r) °aa 0 gT x2 o dA=O
a xay 1 p axay 1 rr kJ~~d0

f ; (UEI)Hx~l dA = a2 |gTy X i Jo W )dA-0=
ayax ayax r ki

Jj HI a e'klz(UElY dA = y , Jo (r) ik eklza [-gTyJo (r) + gTX *0] dA =0

14
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and

f y2 elklz (UEj)ZH =0.

From this it is seen that K 1 = 0. Also, since m and n are dummy indices when used together, it
is seen that K2 2 = 0.

Discussion: When m = n, Kmn expresses the condition that the energy density E * D is no longer a
sum of diagonal terms, because each component of a single mode is coupled to the other two com-
ponents through U. The mode is said to be detuned. When m • n the disturbance couples a com-
ponent of one mode to the components of the second mode. Such coupling is forbidden in the undis-
turbed material, but it is the origin of experimentally observed twist effects.

Evolution of Electric Vector Polarization in the Case of Pure Torsion of a Fiber

The set of coupled equations in Am is now applied to two degenerate modes:

dAId = iKIIAI + iK12 A2

and

d = IK21A1 + iK2 2 A2 .
dz

Since A1 and A 2 are complex numbers, a convenient transformation of this set can be made in terms of
ip and 4, representing their normalized amplitude difference and their normalized phase difference,
respectively. The mean amplitude C and mean phase 4' do not contribute to mode coupling and so are
not considered. By further introducing the spatial beat frequency 28 = K - K12 , and assuming a loss-
less fiber, K12 = KII = IKI21e'Y, Ulrich [10] shows that the angular velocity il and direction of the axis
R of rotation are given by

l = 2(82 + K2)1/2
- (KI - K22)

2 + 4K12 K * 11 2,

2qIR = arctan - = arctan K1-2K~~~~4K

and

2OR = arg K12 v.

Thus an evaluation of the mode coupling coefficients Ki,,, gives directly the location of the axis of rota-
tion and the rotation per unit of length.

These results may now be used to find the magnitude and direction of the axis of rotation in the
case of pure torsion:

IQ I = 14 K 1 2K 1= 2 IK 121 = T Ip 4 4 1no (units: rad/m),

2x= 2 R = arctan(0) = 0,

and

2= 2 = arg K 12 = -90o°

Since 14R I = 45°, it is seen from the properties of the Poincare sphere S that the two modes are in
time-phase quadrature, hence the polarization is circularly birefringent. Also, since O R = 0, it is seen

15
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that the amplitudes of the two modes are always equal, hence the trajectory of the state of polarization
is the equator of the sphere S. Therefore, the axis of rotation is LR and the rotation vector is a.

Choose now a fiber of fused silica. Then the angular velocity of the trajectory is

IQ I = I-0.075l(1.46)2T = 0.16T.

Actual measurements show [91

d = +0.13 ± 0.01.
T

From this discussion of Ulrich and Simon's work it is seen that these results apply only to pure twist-
induced optical activity. Next we include birefringence.

The optical activity rotation about LR is described by a - 2x, while the birefringent rotation
about HV is described by P. When the two rotations are combined, the state of polarization traces out
a cycloidal trajectory, that is, the circular trajectory traced out by the tip of the C (z) unit vector in the
local coordinate system is added to the trajectory of the unit vector as it moves around a latitude circle
located at angle of elevation 2i, where

2t = arctanj 2rI

To illustrate the use of these results, Ref. 9 solves the problem of the use of a fiber of length L, fixed
at its ends and twisted at the center through such an angle 0 that the fast and slow modes are inter-
changed in their powers at the output. To achieve this, one sets

2q, = + r/4

and

flL = Tr.

Thus,

a - 2T - 1

Li = [2 + (a - 2T)2]1/2 = Go

and

L = r

The required 0 is then

0 = T L = = X7( -1' ~/,t 2-8 2-(a - 27)

AT

-FIg- 21'

where

ag =-.

For a fused silica step-indexed fiber g = 0.13, so,

0 = IT 18 68°T-2an 1.87
Thus, if a length L is double-twisted at its center ± 680 there is an interchange of slow and fast modes.

16



NRL REPORT 8425

Periodic Dielectric Polarization

When the dielectric polarization is periodic in space and time it can be represented in real form by

P = UE U(r, t)Ecosflit - Zl (35a)

and

V= K (35b)K'

in which K is the spatial wavenumber of the elements of U and Li is the associated angular frequency.
With this form of P the propagation of E is found from Eq. (7) to be

V2 E - WE 0 -- E = E -'(VE o E) + e 1 a (r, t)E - (36)

+ EO-1 V * U (r, t)E cos l It v||

In the case of a homogeneous glass optical fiber under mechanical stress an approximate model for E
can be obtained if one assumes that

VEo - 0, (37a)

E=E(r)eI w, >> Ql, (37b)

g, -- go, (37c)
and

U (r, t) - U (r). (37d)

Then

V2 E (r) + k2E (r) =-eO 1 u'[U (r)EI Li2 cos i It-#J (38)

+ E o . u(r)E cos Lt - -ZlI

From this it is seen that all electric field polarization effects discussed earlier in this report will become
periodic with period T = 2i7r/fl.

ANALYSIS BY PHOTOELASTICITY OF ELECTRIC FIELD POLARIZATION OF
SINGLE MODE FIBERS UNDER MECHANICAL STRESS

In previous sections of this report the optical fiber was assumed to be carrying two degenerate
modes although its physical construction was "single mode." Also, the dielectric polarization UE was
assumed to be caused by applied elastic strains. We next consider the case of single-mode fibers carry-
ing only one mode and assume UE to be caused by applied elastic stresses. The theory of the electric
field polarization in this case is the classical one of photoelasticity. Our objective in the following sec-
tions is to make numerical estimates of the changes in index of refraction of optical fibers with applied
mechanical stress. To have a substantial basis for assuring the validity of these estimates, it is neces-
sary to review the fundamentals of the theory of photoelasticity.
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Stress Analysis

Mechanical stress in an elastic body is represented by a matrix of forces acting on an elementary
volume centered at a point. The matrix T in three-dimensions (x, y, z) has nine components TV (i =
x, y, z, j = x, y, z). The first subscript indicates the x, y, or z component of the force through the
point; the second subscript indicates the coordinate plane through the point on which the component
acts. In two dimensions (say coordinates x, y) the matrix has four components of plane stress. In iso-
tropic materials the off-diagonal components are equal, thus reducing the state of plane stress to only
three distinct components, namely, two normal stresses, crx and (Ty, and one shear stress rxy (=ryx).
Through the center of the stress volume, in the plane of plane stress, there is always one direction (the
trace of a normal plane) in which the normal stress (p) is a maximum, and an associated orthogonal
direction (or plane) in which a second normal stress (q) is a minimum (Fig. 6). These are the principal
directions (or planes) of stress at the point. In these directions the shear stress vanishes. Rotation of
these directions about the center causes the shear to grow until it reaches a maximum at a rotation of
45°. When the stress at a point is three dimensional, one can create a condition of plane stress by
choosing any direction through the point and calculating the stresses on a plane perpendicular to this
direction. On this plane one can then locate the orthogonal directions of the secondary principal stresses
by formulas given in later sections.

The existence of primary principal stresses in two-dimensional stress and secondary principal
stresses in three-dimensional stress determines the state of polarization of light propagating through the
point in a stressed body. This is considered next.

Fig. 6 - Principal axes of plane strain

q\ 

Propagation of Polarized Light in Doubly Refracting Materials

Every elementary volume centered at a point of an elastic body under mechanical stress exhibits
temporary double refraction to polarized light, provided certain conditions are fulfilled. Upon entering
the volume in a given direction through its center, the light ray may encounter a state of local plane
stress on a plane through the center transverse to the incident direction. These are the stresses that
alter the state of polarization of the light. No other stress components have any effect on polarization. The
light vector oscillating transverse to the direction of propagation sees only two orthogonal planes upon
which it can vibrate, all other planes being effectively prohibited. These are the planes of primary or
secondary principal stresses, whose traces are in the transverse plane. The light therefore splits into
two components: one component travels with its light vector parallel to one principal plane, and the
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second component travels with its light vector parallel to the orthogonal principal plane. The speed of
travel of each component is determined by the value of the principal stress it encounters along its path.
Since the principal stresses are generally different in sign and magnitude, one component travels on a
fast axis (or plane) and the second component on a slow axis (or plane). If the incident light is of a
single frequency, this difference in speed between the two beams displays itself as a difference in phase
(kfast - ksl0w)z at each coordinate distance z of the path, k being the wavenumber of the propagating
light. The relation of altered wavenumbers kfat and kI5ow to the mechanical stresses p and q forms the
basis of the theory of photoelasticity. This is discussed next.

Repeated experiments have established the stress-optic law that kfast - kId10 is proportional to
p - q; that is, the difference in wavenumber is directly proportional to the difference of principal
stresses in the transverse plane. If the incident polarized light of single wavelength X0 propagates
through a thickness d of a stressed elastic body, the two components exit with a phase difference of

A4)d= koC(p - q)d,

where ko = 2iT/X 0, C is the stress-optic constant of the material, and p - q is the difference of primary
or secondary principal stresses in the transverse plane. An estimation of this phase difference and the
state of exit polarization of the two component beams requires careful consideration. This is now
reviewed.

Polarization Effects in Stressed Elastic Bodies

Assume first that the incident light is plane polarized at an angle a with the x axis in an xy coordi-
nate system, and assume that the coordinate axes are principal axes of stress. The plane xy is
transverse to the incident ray (Fig. 7). The incident light vector is represented as a simple sinusoid,

s = acoscat.

E LIGHT VECTOR

Fig. 7 - Linearly polarized light in a stressed body

It splits into two unique components (no other components effectively propagating) initially synchron-
ized (that is, having the same temporal phase),

s, = a cos a cos wt and sy = a sin a cos t.

These components travel along the principal planes of (two-dimensional) stress at different speeds, Jx
and Vy. After a propagation distance d they become unsynchronized,
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s.= aI cos (wt + AO 1),

sy = b* cos (ct + AO 2),

a*= a cosa,

b*= a sin a,

AX I =-Wz'
V'l

A42 = VZ'
.V

and

(AO1 - AO2)/2= Asbd= koC(p - q)d.

In the theory of photoelasticity the angle AOd is measured to find the stress difference p - q. This is
done by causing s, and sy to interfere in a selected plane of a polariscope. Choosing plane EF perpen-
dicular to the incident light vector, one finds the amplitude of the resultant vibration to be [11, p. 124]

B = a sin 2a sin AOd-

If p - q is zero, B is zero, meaning that the light transmitted through point 0 is extinguished when
viewed on plane EFin a polariscope. A similar extinguishment occurs when

Add= koC(p-q)d= nT, n = 1, 2....

If the stress difference p - q is a function of time,

p - q = p(t) -q(t),

then

B = (a sin 2a)sintko C [p (t) -q (t)d),

i.e., the light viewed in the polariscope on plane EFvaries in amplitude with time.

If the propagation direction is z, then the light vector of Fig. 7 at any distance z = const. is the
vector sum of two unsynchronized components of different amplitude. Thus, in the plane z = const.
the total light vector rotates in time about the center in an elliptical motion. The stress difference
p - q can then be said to unsynchronize the initially synchronized components of the plane-polarized
light along the principal axes. Since the unsynchronization varies with distance of propagation d, the
major and minor axes of the elliptical motion of the light vector change continuously with increase in
path. However, at any station z = const a polariscope will find a plane EFalong which the transmission
will be extinguished whenever p - q reaches a level such that AO d = n r, n = 1, 2 ....

Next we consider the case where the incident light ray at z = 0 has two equal-amplitude orthogo-
nal components which are temporally unsynchronized by 90°:

SX = a cos cot

and

sy = a sin wot.

The light vector rotates in a circle about the center point of incidence in the plane z = const. Assume
that it rotates counterclockwise. Upon propagating a distance d through a stressed elastic body in which
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p - q in the transverse plane is finite, the two components of the light vector are further unsynchron-
ized by the temporal phase AO d defined above. Assume a reference axis y' along which the incremen-
tal phase vanishes. Then

sX = a cos(ot + A++) = a sin(wt + 7r/2 + A/td)

and

sy= a sin co t.

It can be shown [12, p. 941 that the motion of the resultant light vector at a local station where
z = const can be resolved into two oppositely rotating circular motions:

s( = A cos (cot + y), s (1) = A sin (ct + y)y
and

s(2) =-B cos (cot + 8), s(2) =B sin (cot + 8),
where

A 2 = a 11 +sinI|T +OdJ1.

2 O 1 2+ |

Cosr7T +(AdJ

tan y =-
1 + sin 72T + 4d

B2 = 2 - sin( 2 +OdJJs

and

Cos |2 + 4d|
tan 8 =

1 - sin| 2 + 4d|

The combination of the two motions is equivalent to elliptical motion. Thus, the components of
incident circularly polarized light are temporally unsynchronized more or less than 900 by mechanical
stresses p - q, making the resultant elliptically polarized. As before, the angular location of the major
and minor axes of the traced ellipse varies continuously with distance of propagation. Several possible
conditions of polarization can be obtained:

* If the phase difference Akd corresponds to an integral number of wavelengths ( 2n 7, n = 1,
2 ... ), no change in the initial circularly polarized light results.

* If the phase difference corresponds to a half wavelength (plus any number of integral
wavelengths), then A = 0, B = a, and the initial circularly by polarized light emerges with
reversed direction of rotation.

* If the phase difference is arbitrary, A and B are finite and different, and the initial circularly
polarized light emerges elliptically polarized.

Finally, we consider the case where the incident light has two orthogonal components with
unequal amplitudes, temporally unsynchronized by 90° so that the resultant light vector traces an ellipse
in a plane normal to the optic ray:
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sx = a cos cot

and

sy = b sin c t.

If one sets [12, p. 941

A 2 = 1 a2 + b2 + 2ab sinI 2 +9SdI1

B 2 = 1 ja2 + b2 - 2ab sin| 2 +AdII'

a cos 2y +Odl

tan 1 )
b + a sin 72r + Od

and

a cos| 2 + 'P d|

tan =

b-a sin-T + kdJ

then it will be seen that

* If kd corresponds to an integral number of wavelengths, no change in polarization is to be
expected.

* If 4O d corresponds to a half-wavelength, then the initial elliptical polarization emerges ellipti-
cally polarized with reversed rotation.

* If Ad is arbitrary, the emerging light is also elliptically polarized with different sizes and direc-
tions of major and minor axes.

Summary

This completes our brief review of aspects of photoelasticity which are relevant to the study of the
effects of mechanical stress on polarization of incident light. Photoelasticians use their tools to measure
stresses p and q. The same tools in optical-fiber studies require the stresses to be known. We assume
in subsequent sections that the stresses p and q can be estimated in specific examples. When the
stresses are evaluated we can make numerical estimates of phase changes A4d. These are also esti-
mates of changes in index of refraction An caused by stress birefringence. This is explained later in the
report.

APPLICATIONS

Case 1. Applied Stress on the Fiber is Axisymmetric
and Everywhere Uniform Along the Optical Path

Here the applied stress is a scalar pressure in the medium which exerts a force normal to the sur-
face. The radial stress (Tr and the tangential stress aro on a polar elementary volume are equal to each
other and equal to the applied pressure [11, p. 551. -The principal stress difference p - q is everywhere
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zero. Hence there is no birefringent effect for an optic ray on the axis of the fiber. Thus, acoustic
pressures in the sonar range of frequencies do not alter the state of polarization of light propagation in
them. Similarly, hydrostatic pressures do not affect the phase of the light beam. It also does not
matter what the time variation of the applied stress is, since no change in polarization of the incident
light will occur as long as the stress is axisymmetric on the fiber.

Case 2. Applied Stress on the Fiber is Axisymmetric but Varies Along the Optic Path

Here again, as long as the applied stress is axisymmetric (that is, an applied scalar pressure), there
is no birefringent effect for axial optic rays regardless of the nature of the variation of stress along the
path of propagation.

Case 3. Tensile or Compressive Stresses are Applied to the Ends of the Fiber

In this case the fiber is uniformly stretched or compressed. All stresses inside the fiber on cross
sections normal to the fiber axis are parallel to the propagating optic ray. Since there are no transverse
components of stress for an axial optic ray, there is no birefringent effect. When, however, the
incident optic ray is oblique to a selected plane of stresses, there is an effect. This is discussed next.

Case 4. Oblique Incidence of Optic Ray and Pure Bending

Figure 8 shows stress components on a three-dimensional elementary volume centered at
x (x, y, z) relative to the origin. The secondary principal stresses at x in direction i are defined (as
noted previously) as the principal stresses resulting from stress components which lie in a plane
transverse to i through x. These are designated (p', q')i. As an example of secondary principal
stresses choose the z direction. When r-, and o-y are present, one finds [13, p. 901

(pi, q) = 2 2Y i V4T 2y + (o,2 a D.

Y

crx

z

Fig. 8 - Stress components on a three-dimensional elementary volume
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The orientation of p' and q' at center point x on the xy plane is along orthogonal axes rotated through
an angle e relative to the x axis,

(tan 2fE)2 = T -

An optic ray propagating in the coordinate direction z obeys the following rules: -(1) Stress components
subscripted with the letter z have no effect on the polarization. Thus, oz , Ty,, and T, have no effect.
In particular, pure torsional moments Mz which produce Ty, and T , have no effect. (2) If the orienta-
tion of the secondary principal stresses rotates as the optic ray advances, the components of polarization
also rotate.

When the optic ray is obliquely incident on the elementary volume, the birefringent retardation is
calculated from transverse components. A simple example is a bar stretched by pure tension in the x
direction (Fig. 9) and pierced by an optic ray in the z' direction parallel to the xz plane. Since stress
components subscripted with the letter z'have no effect on polarization, the secondary principal stresses
are

p' = a , sin2 (

and

q'= 0.

z, x
Fig. 9 - Oblique incidence of optic ray on an

elementary volume

Defining retardation Rd= mX as the number m of wavelengths X (generally not an integer) of
difference in the phases of the birefringent components, one finds that the retardation along oblique
path t' is then [14, p. 339],

Rd = mX = Ct'a, sin2 v = Ct a, sin;,

where

t = t' sin .

This formula will be used in later numerical calculations. We next apply oblique incidence to pure
bending of a bar lying along the x direction and bent by pure moments Mx at a cross section (Fig. 10).
Let the optic ray be incident in the plane of the stresses a- at an angle C with the x axis. Assume that it
enters an elementary volume at y and exits at yo. The secondary principal stresses at the center of the
volume are
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Fig. 10 - Oblique incidence in pure bending
x

sin2 ,

and

q'= 0,

in which I, is the areal moment
348]

of inertia of the cross section about axis z. The retardation is [14, p.

Rd= mX = C fo (p'- q')dt'= CM" sing 
I. 2

Case 5. Fiber Subject to Both Bending and Shear

A fiber of circular cross section is subject to a bending moment M , and a shear Vy at the ends of
a segment whose thickness is in the x direction (Fig. 11). The normal stress at distance y from the
neutral axis is

M1 ,y
C. x 

The shear stresses T for all points on line pp at a distance yl from the neutral axis all point toward the
intersection S of tangent lines pS. Each T has two components [14, p. 121],

V(R2 -_y?2)
TXY = T COS) C (R -3S

=i cos j3 =~3 I
and

Vy IVIR77 1
T= T sin ,8=

where

T = ___ _ = _
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Fig. 11 - Bending and shear of a circular fiber

The principal stresses lie in a plane normal to x = const., rotated through an angle 4f about the z axis,
where

tan 24 = 2T

p = (r + I X 12 + r2j

and

2 1121 1

To summarize the effect of these stresses on the polarization state of the optic ray: (1) An optic ray
propagating exactly in the x direction normal to the cross section experiences no change in polarization,
since all stress components have the letter x in their subscripts. (2) If the optic ray is parallel to the yz
plane at an angle ( to the x axis, the secondary stresses are

p- q' = (p - q)sin24.

The retardation along ray path t' is then

mX = C(p'-q')t'

where p' q' and t' are functions of the distance y from the neutral axis. If the optic ray points in a
direction fixed by direction cosines a,, Pr, and yr (relative to x, y, and z) and the stresses p and q lie in
a plane through the stress point normal to the xy plane, the direction cosines of p being ap, /lip, and 0,
and those of q being aq, 16q, and 0, then the components of p and q transverse to the optic ray are

(p' - q') = p sin2q, - q sin2 ,
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where

cos qf = cos ar cos ap + cos Pr cos ap

and

cos ( = COS a, COS aq + cos Pr COS Aq

The retardation is then given by

mX = C(p sin2 '-q sin2 ()t'.

Case 6. Fiber Wrapped on a Mandrel [15]

A circular fiber of diameter d is wrapped on a mandrel of radius r. A tangential force T is applied
to the two open ends of the fiber to keep it tight. The stresses on a cross section at angle 4 are
analyzed with relation to the forces N and moments M shown in Fig. 12. These are

M = Tr (1-cos),

N = T cos,

and

Q= Tsin 0.

A cross section of the ring exhibits shear and bending (Fig. 13). The neutral axis of bending is orthog-
onal to the plane of the ring and passes through the axis of the fiber.

N

x

Fig. 12 - Forces on a fiber wrapped
on a mandrel

N.A.

x

Fig. 13 - Shear Q and bending moment Mon a
cross section (k = const y

27



S. HANISH

Let x represent the coordinate axis of the fiber, and y the perpendicular distance of any point from
the neutral axis. Then the bending stress is

(TX = MY

where I, -4 and M = 2Tr sin2
- Thus

642

128 Try sin2 X
2

The shear stress consists of two components (see previous section),

Qj d2 -y ~ y2Ti p
Tyx 4 1 64 1 = 3 d4 |s4 in

and

- 2J _64 -4 2

Irzx = I 4 T sinX,

and

r r2+ 2 ~~~32 1 I d2 yl12T = V / =- 3 1- - - _y 2 T sin .

The principal stresses at point (y, z) lie in a plane normal to the yz plane:

p = + || + T21

and

=2 1I12 21

They are on two orthogonal axes rotated about the z axis through an angle a given by

tan2a 2T-

In terms of component shears we can write component principal stresses defined by
r . ~~~~~~~~~ 2~~~~~~ ~1/2

64yTr sin2 2T sin | d_ y2j
(p- q)' 4 24( 211 Tid 4 3 d4

and

- ) || 264yTr sin2M T sin - y2J | /
1 3 
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The effect of these stress components on polarization depends on the angle of incidence of the optic
ray. If the ray is along x exactly normal to the cross section the effect vanishes, since the subscripts of
the stress components contain the letter x. Numerical calculations for optic rays obliquely incident on a
cross section are given in a later section.

Case 7. Fiber Subject to Random Stresses

Let the stress fluctuations (defined as 8s = 8 (p - q)) be randomly distributed along path length
x. Assume that these stresses can be represented by a single scalar function of x. Then the mean-
square phase after length L is reached is

= HIfo koC(x)8s(x)dx]2 >

-k& C2< f8s(x)dx] >

if C(x) = C = constant. In forming the square on the right-hand side, we must allow cross products at
various values of x, x', etc. To evaluate this integral we use Taylor's method [161. By definition of the
normalized autocorrelation function p,

<8s(x)8s(x')>dx'= <8s2> lop(x - xdx'.
Since we always take the correlation p to be an even function, we can write the right hand side as

Now,

lo <8s(x)8s(x')>dx'= <8s(x) f01 , s(x')dx'= <8s(x)X>,

where

X-loxSs(x')dx'.
But

<8s(x)X> = I d-<X 2 >.
2 dx

Thus, over a length L,

<X2> = 2<8s2> f |f p()dedx,

hence,

<802> = k2 C2' 2<8S2 > fL||p(()ddx

Two important cases can be distinguished:

(a) Suppose path length L is short enough so that p (e) is essentially unity over the range of
integration. This is the coherent case. Then

- / = k0 CL i2<8s2>,

that is, the rms value of the phase is proportional to the length of the fiber.

(b) Assume L is so long that the stress at the end of the fiber is uncorrelated with the stress at
the beginning of the fiber. This is the incoherent case. Then

,/f;; L= k0C 2 <8 S2 > LLC,
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where

L,= f p (e) cd, L« << L.

In this case the rms phase is proportional to the square root of the length of the fiber. The symbol L,
represents the integral scale (or correlation length) of the random field.

In both cases we need the variance <8s 2>. This can be obtained from the spectral density 8Ss of
the stress distribution. By Rayleigh's theorem,

J 18s(x)12dx L <8s 2 > = 2T l_ I8Ss(a)12 da,

or

<Bs 2> = 2ST fI 8Ss (a)12 da.
L -'

The spectral density must be determined by measurement.

Case 8. Fiber Squeezed by Diametral Forces: Circular Disk Model [11, p. 82]

A unit thickness of fiber is modeled as a circular disk (Fig. 14). Let two equal and opposite forces
P (units: N/m) act along a diameter. The stress distribution is radial,

2P cos O
=-I r (To = O. T0 = O

Fig. 14 - Fiber squeezed by diametral forces

Since Cos0 1 _ cos0 2 1
ri r2 D and since Tro = 0 the principal stresses on the circumference are

2Pamin = a-max = a-r =- rDP

For equilibrium one must superimpose tensions 2P/TTD on each of these radial stresses. Suppose next
the stresses on a horizontal diametral section are considered (Fig. 15). The normal stress on plane ac is
contributed by two components of the a'S,
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Fig. 15 - Stresses on horizontal diameter

y = -21 2P cos0 coS20l + 2P
r 

or

a-y = db [ (D2 +4x2)2 14

On planes bc, dc, ab, and ad the shear stresses are all zero. The stress in the x direction is

a-1 = 4P cos 0 .sin20 + 2P
-T r STD

Thus a-x and o-y are principal stresses, and their difference along a horizontal diameter is

- 4P cos 2o + 2P + 4P cos COS2 O _ 2P
,7r r TT D 7r r TT D

_ _____20_0) 4P C S02(cos 20- sin2 O) =-cos(1- 2sin2 O).
7T r T7rr

At the center, x = 0 y,

8P
p q TrD

At the boundary, x = 2 'Y = 0,

p - q = 0.

Numerical calculations of this case are given in a later section.

Case 9. Pure Torsion [11, p. 235]

A fiber of circular cross section (radius a) is subject to a torsional moment M, (Fig. 16). On a
plane z = const., the shear stress is resolved into two components,
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y /_- _ \ 
Y~~~~

1, \ XMt

4 ~~~~AA~,y) X x 00,

Fig. 16 - Fiber subject to pure torsion

2M, y
T e ra4

and

2M,X
Ty i =

In polar coordinates r, a,

2M,rsina
Txz 4

ir a
and

2M, rcos a
T, 4

The combined shear is

= (T 2 +T2 )1/ 2 2M, 
T X, + TYZ ira4

and

2M, 16 M,
Tamax, =ra3 To d'

The angle of twist per unit of length (3) is given by

M, _32M,

G4l Gird 4

where G is the modulus of rigidity and Ip is the polar moment of inertia of the area of the cross section.

Assume that the optic ray is incident obliquely (at angle 0) to the cross sectional area parallel to
the xz plane (Fig. 17). Resolve stress rx, into components parallel to and transverse to the ray. The
only effective component is transverse:

p =(Tx, = T., sin2 O; q'= 0.
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Fig. 17 - Oblique incidence in pure torsion
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x

Next consider Tyz It has a pair TZY which lies in the xz plane (Fig. 18). The transverse component of
TZy is T' = rzy sin 0. Thus, the secondary principal stresses at point (xy) of the circular area of the
cross section are

, X' + I ida 7~+4, 2

and

a-x' 1

hence,

p'- q'= 2sin0 VTXcos +CTo y

=4sin 0 l S/y
2

2COS
2 0 +X 2

ira4

4sin 0 M, r sin 2 a cos2 0 + cos 2 a.
7ra4

For fixed 0, this stress difference is maximized at r = a:

(p' - q') -=4sin 0 ' b sin2a + cos2a.ma r a3

z

Fig. 18 - Oblique incidence with TZY component
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When x = 0, namely when points are taken along the y axis,

I- , 4sin G Mt
ira

and

4sin 0 Mt 2M,
[(p'- q')y]max = ira cos 0 = sin2 0.

When y = 0, namely for points along the x axis,

[(A'-q)X~maX = 4sin GM, t 32sin 0 Mt

xTa ir d

This case is computed numerically in the next section.

NUMERICAL CALCULATIONS

Stress-Optic Constant C

The theory of photoelasticity specifies the value of the stress-optic coefficient in terms of a fringe
value f defined as follows:

Let m be the fringe order and mX the phase retardation, in units of wavelength, between the fast
and slow waves in a birefringent material. Then the stress-optic law requires that

mX = C(p - q)d.

Photoelasticians measure maximum shear stress T max = p2 For convenience they define a model

fringe value Fby the relation

T max p q= mF,
2

from which it is seen that

orC=
2 Cd' 2Fd'

Thus,

mX = A - q).
2F

Here F is a material parameter whose value for a given material depends on the wavelength of the
incident light and on the thickness. Usually values of F are tabulated for a standard thickness of 1 in.
(25.4 mm). It is then called the fringe value f. the units of which are (lbs/in.2) x inch/fringe (6.895
kPa x 2.54 cm/fringe). For any other thickness (or propagation length),

F= - (units: psi/fringe or 6.895 kPa/fringe).
d

Thus the fringe order is

m= (p - q)d (units: fringe)
2f

Now for every retardation (between slow and fast waves) of one wavelength the phase retardation is 2ir
rad. Hence, the total phase retardation in a fiber of length L is
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'fd= mA X 2ir -r -q)L (units: rad.).f
(For consistent units p and q are in psi [6.895 kPal, L is in in. [2.54 cm].) CJ'

The value of f in the case of glass varies with the composition and wavelength. Frocht [12, p.
350] gives f = 490 to 1500 psi * in. (86 to 263 kPa * in) for a wavelength of 0.5461 Aum. Jessup [171 e:#
cites a value for glass in the range f = 800 psi ' in. (140 kPa i m) upward .

A different approach to calculating C is adopted by physicists. They begin with

Abd = mA 0= - C(p - q)d = kOC(p - q)d.
To S~o

From this they define an effective difference in index of refraction Aneff between fast and slow rays
caused by mechanical stress,

Alneff= C(p - q) (units: none).

It is thus seen that the units of C are the inverse of the units of mechanical stress, namely m2 N 1.
The quantity C is related to the classical stress-optical coefficients qj of a material. If the material is
isotropic, then [6, p. 705]

n3

Aneff= 2 (qj - q12)(P - q) (units: none).

Thus,

C = 2~3 (qjj - q12) tunits: MlI

Numerical values of qjl and q12 are usually derived from a knowledge of the strain-optic constants Pij
of the material. For stiffness tensors Cjk and compliance constants sij one has

6
PY qik Cjk

k=1

and
6

q= I Pik Sjk'
k=1

Since fused silica is elastically isotropic, one finds

pll = qjj C11 + 2q 12 C12

and

P12 = q1j C12 + q12(C11 + C1 2)-

Now, for fused silica, n = 1.46,

C11 = 7.85 x 10's N/m 21
C12 = 1.61 x 1010 N/m2J Ref. 18,

and

pl = 0.1211

P12 = 0.270J Ref. 19.
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Solving by Cramer's rule, we obtain:

qll= 3.98 x 10-13 m2/N = 2.74 x 1079 in.2 /lb

and

q12= 2.78 x 10-12 m2/N = 1.92 x 10- 8 in.2/lb.

Thus we estimate C to be

C 1.46 (2.74 x 10-9 - 1.92 x 10-8)
2

=- 2.55 x 10-8 in.2/lb -3.70 x 10-12 m2/N.

We check this value by use of a formula from Frocht [12, p. 1561

C = = 561x 10-_ = 2.58 x 10-8 in.2/lb (3.74 x 10-12m2/N).2f 2 x1060
The magnitude is close enough. Thus if we retain the units of X in centimeters, take f to be 1060, and
disregard the negative sign we see that our computed values of qll and q12 are verified. An additional
check on the value of C is found in [9], where C for fused silica is given as -3.36 x 10-12 m2/N. This
agrees closely with the values noted above from other sources.

We proceed now with the analysis of several cases of elastically stressed bodies.

Numerical Calculations of Fiber on a Mandrel (Case 6)

A fiber 80 Am in diameter with a cladding 55 A in in diameter and a core 4.5 L in in diameter is
wound on a mandrel which is 1 cm in diameter. From the tension in the fiber T we wish to determine
the difference in principal stresses in the core and the birefringent effect per unit complete turn.

We begin with an analysis of the loading. The relative areas are

ATOT = ir4 = d i x (80 x 10-6)2 = 5.03 x 103 ,U m2(7.79 x 10-6 in. 2),
4 4

Acladding = [(55 X 1076)2 - (4.5 x 10-6)2] = 2.36 x 103 .mi2 (3.66 x 10-6 in.2 ),
4

Acore 7(4.5 x 1O-6)2= 15.9, im2(2.47 x 10-8 in.2),

and

Asubstrate = 5.03 x 103- (2.36 x 103 + 15.9) = 2.65 x 103 ,u m2 (4.105 x 10-6 in.2).

Assume that a tension of 170 MPa (25,000 psi) is permitted. The tensile force on each area is

TTOT= 25,000 x 7.79 x 10-6= 0.195 lb= 88.4 g (0.867 N),

Tcladding = 3.66 x 10-6 X 0.1948 = 9.15 X 10-2 lb = 41.5 g (0.407 N),7.79 x 10-6 0198=91x102l-415g(.7N)

Tcore - 2.47 x 10-8 X 0.1948 = 6.17 x 10-4 lb = 0.28 g (2.74 mN),
7.79 x 10-:6

and

Tsubstrate = 4.105 x 10-6 x 0.1948 = 1.03 x 10-1 lb - 46.6 g (0.458 N).
7.79 x 10-6
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We now undertake a solution to the problem.

We know from Case 6 that the principal stresses are in the XY plane and the XZ plane:

64yTr sin2 2 1 2

and

64yTr sin 2 T sn 1 d2 _ 21
(p - q)1,,~ = 21 2 4 + 1 32yTsiI d 2 - y2JJJ

We consider (p - q)xy first. Two approaches appear feasible in estimating the polarization effect of
this quantity. In the first we consider the fiber to be homogeneous and subject it to a maximum ten-
sion TTOT. We then calculate the principal stresses at y = 4.5/2 = 2.25 Am, for d = 80 Am. In the
second approach we consider only the core and subject it to a tension Tcore, The calculations are as fol-
lows. For component (p - q)xy: T= TTOT, d = 80 A m, y = 2.25 A m, and 4 = 900. Then d= 80
X 10-6 x 39.37 = 3.15 x 10-3 in., y = 2.25 x 10-6 x 39.37 = 8.86 x 10-5 in., and

64 8.6 x10--sx 1.97 x 10-1 x 0.5 2(p - q)1,, = 2T{(6 .6i(.5x1-) 
xy 7T T(3.15 x 10-3)4 

+ 32 X 1 113.15 X 10-3 2 2 (881 O-~l l/2
+ 3 (3.15 x 10-3)4 ((.52 0J - (8.85 x 10-5)JJ

=2T(3.26x 1012 +7.22x 1010)1/2

= 3.65 x 106 Tpsi, Tinlb(55.5 TGPa, Tinkg, or5.66 TGPa, TinN).

The secondary principal stresses at 40 inclination of the optic ray are

(p'- q')1,y = 3.65 x 106 T x sin2 (40)

= 1.776x 104 Tpsi, Tinlb (270 TMPa, Tin kg, or 27.5 T MPa, Tin N).

The total loading is TTOT = 0.1948 lb (0.0884 kg or 0.867 N). Thus,

(p'- q')1,y = 1.776 x 104 X 0.1948 = 3.46 x 103 psi (23.9 MPa).

Thus the difference An between slow and fast components is

An = C[(p'- q')xy]max = -2.55 x 10-8 x 3.46 x 103

= -8.83 X 10-5l.

Now assume 4 = 1800; then

ir(3.15 x 10-3)4

and
= 7.22 x 106 Tpsi, Tin lb(lO0 TGPa, Tinkg,orll.2 TGPa, TinN).
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The secondary principal stresses at 40 incidence of the optic ray to the fiber axis are

(p'- q'),y,= 7.22 x 106 T x sin 2(4 9

= 3.51 X 104 Tpsi, Tinlb(535 TMPa, Tin kg, or 54.6 TMPa, TinN).

Again let T = TTOT = 0.1948 lb (0.0884 kg or 0.867 N). Then

(*' - q')y = 3.51 x 104 X 0.1948 = 6.85 x 103 psi (47.2 MPa).

Thus, An = -2.55 x 10-8 x 6.85 x 103= -1.75 X 10-4.

Next, component (p - q)1,, is seen to be about the same as (p - q)1,y. Hence, for 4 = 180°,
the total An is about -XI- larger than for either component; i.e., An = -1.75 x 10-4 x V-2 -2.5
x 10-4 at a tensile force T = TTOT which is close to the limit (that is, close to the ultimate stress of the

glass fiber, taken here to be 170 MPa, or 25,000 psi).

Next, we make a calculation as if the core alone is wrapped on the mandrel.

Bare Core on a Mandrel (Case 6)

Let us consider only (p - q)x1 y, where

_64 Tr
[*p- q) 1, ,y max=6 3

Using conventional units (Tin lb, r and d in in.),

r = 0.5cm= 0.5/2.54= 1.968 x 10-1 in.

and

d = 4.5, um = 4.5 X 10-6 x 39.37= 1.77 x 10-4in.,

thus

-@ _ q m = 64 Tx 1.968 x 10-1
q ,xy max ir (1.77 x 10-4)3

= 7.23 x 1011 Tpsi,Tinlb(l1.0 TPPa, Tin kg, or 1.12 TPPa, TinN).

The secondary stresses at 4° inclination of the optic ray are

[(Pp- q)xylmax= 7.23 X 1011 T X sin2 (4 9

= 3.51 x 109 Tpsi, Tinlb (53.3 TTPa, Tin kg, or 5.44 TTPa, TinN).

Thus the increment in index of refraction is

An = C[(p'-q')xylmax =-2.55 x 10-8 x3.51 x 109 T

= -89.7'T/lb, Tinlb(-198 T/kg, Tinkg, or2O.2 T/N, TinN).

Let T = Tcore = 6.17 X 10-4 lb (0.280 g or 28.6 IN). Then

An = -89.7 X 6.17 x 10-4= -5.53 x 10-2.

Parameter Variation for Calculations of An of a Bare Core on a Mandrel (Case 6)

(a) Let the parameter be the angle C between stress system and optic ray. The functional depen-
dence of An on is sin 2t. Let T= Tcore = 6.17 x 10-4 lb (0.280 g or 2.74 mN). Then the relation-

ship between C and An is given in Table 1.
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Table 1

An

00 0
10 -3.44 X 10-3

20 -1.37 X 10-2
30 -3.095 X 10-2
40 -S.S X 10-2

(b) Let the parameter be the tensile force T = Tcore at the ends of the fiber. Assume ( = 40 is
the angle of incidence of the optic ray. Then the relationship between T and An is given in Table 2.

Table 2

TTOT TTOT TTOT Tcore Tcore Tcore An
(lb) (g) (N) (lb) (g) (N)

1.947 x 10-2 8.83 8.66 X 10-2 6.17 x 10-5 2.80 x 10-2 2.74 X 10-4 -5.5 X 10-3

1.947 x 1073 8.83 x 10-1 8.66 x 10-3 6.17 x 1076 2.80 X 1073 2.74 x 10-5 -5.5 x 1074

1.947 x 10-4 8.83 x 10-2 8.66 x 10-4 6.17 x 10-7 2.80 x 10-4 2.74 x 10-6 -5.5 X 10-5

1.947 x 10-5 8.83 x 10-3 8.66 x 10-5 6.17 x 10-8 2.80 X 10-5 2.74 x 10-7 -5.5 x 10-6

Fiber Squeezed by Diametral Press (Case 8)

The effective birefringent increment An is obtained from Case 8. We have

An = C(p - q) = -2.55 X 10-8 in. 2/lb x 8 DP lb
ir D in. 2

= -6.50 x 10-8 D

Suppose first that the force P acts on the core, D = 4.5 ,um = 1.77 x 10-4 in. Then

An = -6.50 x 0o-8 P = -3.67 X 10-4 P.
1.77 x 10-4

To estimate P. assume that a-y is the maximum allowable stress, say 170 MPa (25,000 psi). Then at
the center of the fiber disk

I-y I = 170 MPa= 25,000 - 6P
in. 2 irD'

Thus,

p ir x 1.77 x 10-4 in. x 25,000lb/in. 2 - 2.32 lb/in. (406 N/m).

The differential An due to birefringence is then

An = -3.67 x 10-4 x 2.32 = -8.5 X 10-4.

Average An Along a Horizontal Diameter (Case 8)

The stress p - q can be averaged along a horizontal diameter by integration over the polar angle
0:
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(p - q)AV 4p 14 (Cos -2cos O'sin2o)dO

2.4P 4.8P
irr 7rD

Hence, the differential An due to birefringence is

(An)AV = -2.55 X 10-8 X 1 7 lo4 = -5.1 X 10-4.

ir x 1.77 x 10-4 51) o~
Pure Torsion (Case 9)

Let us use the last formula of the analysis of Case 9 to find An. Now

iTrd
(M,) max Tmax

16 mx

Let d = 80/Am = 3.15 x 10-3 in., and assume

Tmax = 2.8 X 10 3 G = 2.8 x 10-3 x 4.5 X 106

= 1.3 X 104 psi (89.6 MPa).

Here we have selected G for fused silica, and the factor 2.8 X 10-3 is the ratio of permissible tensile
stress to Young's modulus. Thus

(Mt)max = -7r(3.15 x 10-3)3 X 1.3 x 104/16.

z 7.98 X 1075 in lb.

Hence the maximum angle of twist per unit of length is

7.98 x 10-5 x 32
9max= 4.5 x 106 X ir x (3.15 x 10 )

1.83 rad 105 [0.72 rad
in. in. cm )

Now choose the angle of oblique incidence.to be 40. Then for a core which is 4.5 gLm (1.77
x 10-4 in.) in diameter

(Pt , q 4sin GMt x 4 x sin4ox 7.98 x 1075 in-lb (1.77 x 1074)
ira3 a 3.15 x 10- 314 2

1 2

= 102 psi (703 kPa).

Hence, finally, the differential An due to birefringence is

An = -2.55 x 10-8 X 102 = -2.60 x 10-6.

We see that pure torsion has negligible birefringent effect for a fiber carrying a single mode. Twist,
however, introduces coupled modes, even in a single mode fiber (see the section on coupled modes).
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Fiber Subject to Random Stresses (Case 8)

Assume that the stress field in the fiber is randomly distributed and can be represented as having
a transverse component of fluctuation,

8Srms = 8 (P - q)rms,

Then the effective rms difference between the fast and slow components of birefringence is

Anrms = C8srms'

From this one obtains the rms phase difference between the two components after a length L,
84 ' rms = koAnrmsLeff, Leff =-h-i-Li.

Our main interest is to calculate Anrms for fibers made of fused silica:

Anrms = -255 X 1078srms (as in psi)

[-3.708srm, (8 s in TPa)] .

We select for calculation a value of Anrms which is equal to that calculated for applied diametral forces,
namely Anrms = -8.5 x 10-'. The corresponding fluctuation in stress required to generate an equal An
is

8srms = -8.Sx 10" = 3.3 x 104 psi (230MPa)

This is very large. We conclude that average frozen fluctuation stresses have negligible influence in
producing a An of significance if they are of the order of 103 psi (7 MPa) or less. As an extreme case,
suppose An = 0.1 n = 0.146. Then the required frozen stresses have magnitude

18srMs 0 = .146 = 5 7 X 106 psi (39 GPa).IrmI=2.5 5 x 10-B

Such stresses are far beyond the ultimate strength of the fiber.

The phase difference after length L depends on LC. Assume V/- 1 -4 1 m = Leff. Then for
An = 8.5 x 10-4 and X = 5.461 X 10-7 M we have

2ir ~~~2ir x8.5 x10-4 i
84'rms = A AnrmsLeff 5 461 7 x

= 9.78 x 103 rad.

If we desire 84 rms = 1 rad, then 8srms - 3.4 psi (23 kPa) and An = 8.5 x 10-8.

CONCLUSIONS

Laser light propagating in a fiber may experience a change in the state polarization when the fiber
is subject to mechanical stress. The classical formula for this effect is written in terms of a retardation
in units of wavelengths (mko), or phase difference in units of radians (A4d) between slow and fast
components of birefringence:

mX = C(p - q)d

and

A4d= koC(p - q)d
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(symbols explained previously in text). An analysis of nine cases of applied stress has been presented.
It is concluded that the birefringent effects are negligible in most applications because there are no
components of stress transverse to the optic ray. Two important cases do show birefringent effects:
fiber squeezed by diametral forces and fiber subject to random stresses. Numerical calculations predict
that for fibers of fused silica, at the limit of allowable stress,

Aflmax =-8.5 X 10-4 for the case of applied diametral forces

and

A4Od z 1 rad if the rms stress fluctuation is 3.4 psi (23 kPa).

The case of a fiber 80 E m in diameter with a core 4.5 s im ih diameter wound on a mandrel 1 cm in
diameter has also been numerically estimated for fused silica at the maximum allowable stress. Here
the birefringent effect is negligible if the optic ray is parallel to the axis of the fiber. However if the
optic ray is incident at 40 to the optic fiber, then it is estimated that

An max -2.5 x 10-4.
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